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Abstract:

A formula is derived for determining dynamic stress intensity factors

directly from crack mouth opening. displacements in dynamic tear test specimen.

The results obtained by the present estimation method for stationary as well

as propagating cracks agree excellently with those directly obtained through

a highly accurate moving-singularity finite element method. The present

method can also be applied for other types of specimen which have a relatively

short edge crack without any loading on the crack surface. The present simple

estimation method should be of great value in the experimental measurement of

dviiamic itress-Lnteusity factors for propagating cracks in (opaque) structural

-. to.el ,J..'namic tear tLest specimnlts.
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There is a major difficulty to determine experimentally the dynamic stress

intensity factors for a propagating crack in a non-transparent (metallic) frac-

ture specimen under the conditions of impact loading as well as quasi-static

loading. For a transparent (photoelastic) specimen, dynamic stress intensity

factors can be measured by means of the optical method such as the photoelastic

method [11 or the shadow optical method of caustics [2]. On the other hand,

for a non-transparent specimen, so far, only one attempt has been made for

determining dynamic stress intensity factors directly from the shadow optical

method of caustics [3]. This was done by measuring the light reflected from

the mirrored surface of the high strength steel specimen with a dynamically

propagating crack under conditions of quasi-static loading. However, the

experimental results show large oscillations of stress intensity factor with

high frequencies. These oscillations are attributed to the high frequency

stress waves which may exist only on the surface of the specimen. This

situation may become more critical in the impact test specimen.

In the present note, a simple method is developed for determining

dynamic stress intensity factors directly from the measurement of crack opening

displacement at the notch mouth in dynamic tear testing. A formula for the

relation between dynamic stress intensity factor and crack opening displace-

ment at the notch mouth is derived by using the relation in the static case.

This possibility was found from a critical examination of the results for

;,cvcai nu:imerical fracture simulations made in Ref. [4]. Tie moving-singu-

Larot-." ,.l,,.:kut procedure &:;ed in Re, f. [,i11 ;ive; a direct evaluation of the

ivn.,.nic L trc;S int r1 it v factor,; lot- a pro1p!ating ai; well as stationarv

S' W i1ot.iLioL, aind dimcn,;ions of the dynamic tear test specimen, are shown

' . P'he specimen geometry and material propertims corres ond to those
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reported in Ref. (5]. In the finite element analysis (41, the following initial~A

conditions were used: at time t=O, velocity u T=6.88 m/sec. The tup displace-

ment is calculated by UT=UTt. The displacements at the supports are fixed for

all the times. In Ref. [4], the influence of the loss of contact of the speci-

men at various times with either the tup or the supports has also been investi-

gated. However, we shall focus our attention to the case when the specimen

is in contact with the tup and the supports. A plane-strain condition is invoked

in the two-dimensional analysis.

The crack propagation history is assumed as shown in Fig. 2. This crack

propagation history was used as input data for the "generation phase" fracture

simulation. As shown in Fig. 2, the crack is stationary (C=O) until t=95 Usec,

during the period of 95 to 146 psec the crack propagates with the speed of

375 m/sec, and after 146 psec the crack speed becomes 95 m/sec.

The crack opening profiles as well as the dynamic stress intensity factors

at various times, obtained by the dynamic finite element analysis [4], are

shown in Fig. 3. As seen from the figure the profiles are nearly linear except

very near the crack-tip. To compare with the static case which does not include

the inertia effect, a series of static analyses is perfomred, with the boundary

conditions and crack lengths corresponding to those in the dynamic analysis [4]

at the various times. Fig. 4 shows the crack opening profiles in the static

case. Comparing Figs. 3 and 4, it is seen that the crack profiles for the

botai cases .ire very similar, but with different amounts of crack opening,

at ttie re;pectiv times.

ro vek a correlation between the dynamic and static cases, the following

.-oer :oi nt L:, introducedI ;--

,K - K I5 (1)

o,!rv: i. the crack-mouth openinf' (Fig. 1). For a given specimen size, this
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coefficient depends on not only tile crack ic ,,th but also the crack speed for

the dynamic case, while the coefticiekt is a function of only the crack length

for the static case. The variation of the coefficicnts for both the static

and dynamic cases is shown in Fig. 5. An excellent linear correlation can be

seen in the figure. This correlation suggests the applicability of the coef-

ficient obtained by the static analysis to the evaluation of dynamic stress

intensity factors.

First we shall seek the relation between the static stress intensity factor

and the crack mouth opening displacement. According to Tada's handbook (6],

these are expressed as

K 3PS v F(a/W) (2)
2W2

6 6PSa V(a/W) (3)
E'W

2
where E'=E for plane stress and E'=E/(l-v 2) for plane strain. From the above

equations, the static stress intensity factor can be expressed in terms of the

crack mouth opening displacement 6:

KI - Cs . (4)

with

Cs = E U(a/W) (5)

where

U( I1/;) = 0/l-t 2F(a/I)/V(a/W) (6)

lhe :unctiow:; F(4W) and V(0/W) hav, bt, on reported by various investigators.

,\:;on. th& m, the halnldbook 6 il gives the t ollowing formulae:

[or %/' . 0

L.O') - L.735(a/W) + ,i.2O(a/W) - 14.18(afw) + 14.57(a/W)

(0 aW i 0.6) (7)
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V(a/W) = 0.76 - 2.28(a/W) + 3.87(a/W)
2  2.04(a/W) 3

+ 0.66 )
(1-a/W)2

(any a/W) (8)

and for pur bending (S/W=-);

0.923+0.199{1-sin(w )} 4

,' a 
a)

F(a/W) W tan (2 W) Wa
cos (-)

(any a/W) (9)

V(a/W) - 0.8 - 1.7(a/W) + 2.4(a/W)2 + 0.66
(l-a/W)2

(any a/W) (10)

The function U(a/W) can be calculated by substituting Eqs. (7) and (8),

or Eqs. (9) and (10) in Eq. (6). Since Eq. (7) is invalid for a/W>0.6 and the

function U(a/W) is less sensitive to the normalized span length S/W, the formu-

lae for pure bending, Eqs. (9) and (10), are used to calculate the function

U(a/W), in the present paper.

The variation of the function U(a/W) with the normalized crack length is

shown in Fig. 6. Dynamic stress intensity factors for a stationary crack under

the impact loading condition can be estimated from Eq. (4), by substituting a

value of U(a/W) and the experimentally measured 6.

However, for a dynamically propagating crack, because of the influence

or t ie cr:ick ;!peed on the dispLicemnent field near the crack-tip, a crack speed

corr,,'tiol Cactor Is required to ctetotrmine the stress intensity factors. The

cra,: opivnLn di:;pLacement near a propa'L Ming crack-tip is expressed as [71:

KI) r 'r
IT( ) 2 A(c) (11)v('~ v) G ¥--

wilere K i- the ,;tress intensity factor for dynamically propagating crack,

-4-



G is the shear modulus, r is the disLance from the crack-tip, and A(c) is a

dimensionless function of the crack speed. For isotropic materials, the factor

A(c) is given by

2

A(c) = 22 (12)

48182 - (1+82)

8w -(c/c)2; J=1,2 (13)

The wave velocities c1 and c2 are given by

= l G (14)

and

C2 p (15)

with

3-4v for plane strain
! (16) '

(3-v)/(l+v) for plane stress

In the limit when c=O, the value of the function is given by

K+I
A(O) = 4(17)

If we substitute Eq. (17) into Eq. (11), Eq. (11) becomes identical to the

crack opening displacement for a stationary crack in a static or elastodyanamic

field. Comparing both thesationary and propagating cracks, we obtain the

following relation:

A .(0) (18)

", u, :he0 ;tre:s intens ity factor for a propagatin!g crack can be determined

in torms ,i ,xprimentally mteasurd is

I) * (19)
*1't D a

S. 4.



C - E'rn U(a/W) . B(c) (20)

where B(c) Is the crack speed correction tactor and given by

B(c) = A(0)(A(c) (21)

The variation of the factor B(c) under the plane strain condition, with the

normalized crack speed (normalized by the shear wave speed) is shown in Fig.

7. The factor B(c) versus c/c2 curves depend only on the Poisson's ratio.

The value of B(c) becomes zero at c=cR where cR is the Rayleigh wave speed.

If the crack speed is relatively slow, i.e., c<0.15c a value of 1 can be

used for the crack speed correction factor B(c) allowing an error within 2%.

In order to demonstrate the applicability of the present method, the crack

mouth opening displacements obtained in Ref. [4] are used. Fig. 7 shows the

variations of stress intensity factors obtained from different techniques.

In Fig. 7, the solid line shows the stress intensity factor determined directly

as a variable in the moving-singularity element procedure [4], and the dotted

line shows that calculated by Eq. (19) substituting the crack mouth opening

displacements determined in Ref. [4]. As demonstrated in Ref. [3], the moving-

singularity finite element method gives very accurate dynamic stress intensity

factors. As seen from the figure the present estimation procedure, Eqs. (19, 20),

yields results which agree excellently with those of the moving-singularity

element procedure[4] when the crack is stationary. When the crack propagates,

ho ,evvr, the overall variation of the presently estimated result is good, although

th1 .si1::;.aLd result appears to oscillate slightlv around the result of the

movin.; ;in.ularity element procedure [4). For a given material, it is noted

th.ir 7tepre;ent !i;mple-estimation method gives better results for a shorter crack.

*jr L.Ler typeq of specimen which have a relatively short edge crack with-

,,it inv loading on the crack surface, the present method can also be applied
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to determine the dynamic stress intensity factors from the mouth opening

displacements of the propagating crack.
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Figure Captions:

Fi-. 1: Dynamic tear test specimen

Fig. 2: Crack growth history

Fig. 3: Crack opening profiles in the dynamic case

Fig. 4: Crack opening profiles in the static case

Fig. 5: Variation of the coefficients C(-K /6)

in the dynamic and static cases

Fig. 6: Function of crack length U(a/W)

Fig. 7: Crack speed correction factor B(c)

Fig. 8: Comparison of dynamic stress intensity factors
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